Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Am J Hum Genet ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38593811

RESUMO

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.

2.
Invest Ophthalmol Vis Sci ; 65(3): 25, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38502138

RESUMO

Purpose: A molecular diagnosis is only made in a subset of individuals with nonisolated microphthalmia, anophthalmia, and coloboma (MAC). This may be due to underutilization of clinical (whole) exome sequencing (cES) and an incomplete understanding of the genes that cause MAC. The purpose of this study is to determine the efficacy of cES in cases of nonisolated MAC and to identify new MAC phenotypic expansions. Methods: We determined the efficacy of cES in 189 individuals with nonisolated MAC. We then used cES data, a validated machine learning algorithm, and previously published expression data, case reports, and animal models to determine which candidate genes were most likely to contribute to the development of MAC. Results: We found the efficacy of cES in nonisolated MAC to be between 32.3% (61/189) and 48.1% (91/189). Most genes affected in our cohort were not among genes currently screened in clinically available ophthalmologic gene panels. A subset of the genes implicated in our cohort had not been clearly associated with MAC. Our analyses revealed sufficient evidence to support low-penetrance MAC phenotypic expansions involving nine of these human disease genes. Conclusions: We conclude that cES is an effective means of identifying a molecular diagnosis in individuals with nonisolated MAC and may identify putatively damaging variants that would be missed if only a clinically available ophthalmologic gene panel was obtained. Our data also suggest that deleterious variants in BRCA2, BRIP1, KAT6A, KAT6B, NSF, RAC1, SMARCA4, SMC1A, and TUBA1A can contribute to the development of MAC.


Assuntos
Anoftalmia , Coloboma , Microftalmia , Animais , Humanos , Anoftalmia/diagnóstico , Anoftalmia/genética , Coloboma/diagnóstico , Coloboma/genética , Sequenciamento do Exoma , Microftalmia/diagnóstico , Microftalmia/genética , Algoritmos , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição/genética , Histona Acetiltransferases
3.
Genet Med ; : 101125, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38522068

RESUMO

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report three unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs (GRs) of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type GR can rescue the lethality and autophagic flux defects whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).

4.
Clin Genet ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545656

RESUMO

Hypoxic-ischemic encephalopathy (HIE) occurs in up to 7 out of 1000 births and accounts for almost a quarter of neonatal deaths worldwide. Despite the name, many newborns with HIE have little evidence of perinatal hypoxia. We hypothesized that some infants with HIE have genetic disorders that resemble encephalopathy. We reviewed genetic results for newborns with HIE undergoing exome or genome sequencing at a clinical laboratory (2014-2022). Neonates were included if they had a diagnosis of HIE and were delivered ≥35 weeks. Neonates were excluded for cardiopulmonary pathology resulting in hypoxemia or if neuroimaging suggested postnatal hypoxic-ischemic injury. Of 24 patients meeting inclusion criteria, six (25%) were diagnosed with a genetic condition. Four neonates had variants at loci linked to conditions with phenotypic features resembling HIE, including KIF1A, GBE1, ACTA1, and a 15q13.3 deletion. Two additional neonates had variants in genes not previously associated with encephalopathy, including DUOX2 and PTPN11. Of the six neonates with a molecular diagnosis, two had isolated HIE without apparent comorbidities to suggest a genetic disorder. Genetic diagnoses were identified among neonates with and without sentinel labor events, abnormal umbilical cord gasses, and low Apgar scores. These results suggest that genetic evaluation is clinically relevant for patients with perinatal HIE.

5.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451290

RESUMO

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Assuntos
Craniossinostoses , Displasia Ectodérmica , Perda Auditiva Neurossensorial , Heterozigoto , Humanos , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Masculino , Feminino , Craniossinostoses/genética , Fenótipo , Pré-Escolar , Deformidades Congênitas dos Membros/genética , Criança , Mutação , Lactente , MAP Quinase Quinase Quinases/genética
7.
medRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496558

RESUMO

Genes encoding long non-coding RNAs (lncRNAs) comprise a large fraction of the human genome, yet haploinsufficiency of a lncRNA has not been shown to cause a Mendelian disease. CHASERR is a highly conserved human lncRNA adjacent to CHD2-a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here we report three unrelated individuals each harboring an ultra-rare heterozygous de novo deletion in the CHASERR locus. We report similarities in severe developmental delay, facial dysmorphisms, and cerebral dysmyelination in these individuals, distinguishing them from the phenotypic spectrum of CHD2 haploinsufficiency. We demonstrate reduced CHASERR mRNA expression and corresponding increased CHD2 mRNA and protein in whole blood and patient-derived cell lines-specifically increased expression of the CHD2 allele in cis with the CHASERR deletion, as predicted from a prior mouse model of Chaserr haploinsufficiency. We show for the first time that de novo structural variants facilitated by Alu-mediated non-allelic homologous recombination led to deletion of a non-coding element (the lncRNA CHASERR) to cause a rare syndromic neurodevelopmental disorder. We also demonstrate that CHD2 has bidirectional dosage sensitivity in human disease. This work highlights the need to carefully evaluate other lncRNAs, particularly those upstream of genes associated with Mendelian disorders.

8.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387458

RESUMO

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipídeos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
9.
FEBS Lett ; 598(4): 415-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320753

RESUMO

Matrin-3 (MATR3) is an RNA-binding protein implicated in neurodegenerative and neurodevelopmental diseases. However, little is known regarding the role of MATR3 in cryptic splicing within the context of functional genes and how disease-associated variants impact this function. We show that loss of MATR3 leads to cryptic exon inclusion in many transcripts. We reveal that ALS-linked S85C pathogenic variant reduces MATR3 solubility but does not impair RNA binding. In parallel, we report a novel neurodevelopmental disease-associated M548T variant, located in the RRM2 domain, which reduces protein solubility and impairs RNA binding and cryptic splicing repression functions of MATR3. Altogether, our research identifies cryptic events within functional genes and demonstrates how disease-associated variants impact MATR3 cryptic splicing repression function.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/genética , Éxons/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA , Proteínas Associadas à Matriz Nuclear/genética
10.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405817

RESUMO

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

11.
Am J Hum Genet ; 111(1): 96-118, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
12.
medRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260438

RESUMO

Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.

13.
Am J Hum Genet ; 111(2): 364-382, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272033

RESUMO

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomiopatia Dilatada , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coração , Transtornos do Neurodesenvolvimento/genética
14.
Neurology ; 102(2): e207945, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165337

RESUMO

BACKGROUND AND OBJECTIVES: Heterozygous variants in RAR-related orphan receptor B (RORB) have recently been associated with susceptibility to idiopathic generalized epilepsy. However, few reports have been published so far describing pathogenic variants of this gene in patients with epilepsy and intellectual disability (ID). In this study, we aimed to delineate the epilepsy phenotype associated with RORB pathogenic variants and to provide arguments in favor of the pathogenicity of variants. METHODS: Through an international collaboration, we analyzed seizure characteristics, EEG data, and genotypes of a cohort of patients with heterozygous variants in RORB. To gain insight into disease mechanisms, we performed ex vivo cortical electroporation in mouse embryos of 5 selected variants, 2 truncating and 3 missense, and evaluated on expression and quantified changes in axonal morphology. RESULTS: We identified 35 patients (17 male, median age 10 years, range 2.5-23 years) carrying 32 different heterozygous variants in RORB, including 28 single-nucleotide variants or small insertions/deletions (12 missense, 12 frameshift or nonsense, 2 splice-site variants, and 2 in-frame deletions), and 4 microdeletions; de novo in 18 patients and inherited in 10. Seizures were reported in 31/35 (89%) patients, with a median age at onset of 3 years (range 4 months-12 years). Absence seizures occurred in 25 patients with epilepsy (81%). Nineteen patients experienced a single seizure type: absences, myoclonic absences, or absences with eyelid myoclonia and focal seizures. Nine patients had absence seizures combined with other generalized seizure types. One patient had presented with absences associated with photosensitive occipital seizures. Three other patients had generalized tonic-clonic seizures without absences. ID of variable degree was observed in 85% of the patients. Expression studies in cultured neurons showed shorter axons for the 5 tested variants, both truncating and missense variants, supporting an impaired protein function. DISCUSSION: In most patients, the phenotype of the RORB-related disorder associates absence seizures with mild-to-moderate ID. In silico and in vitro evaluation of the variants in our cohort, including axonal morphogenetic experiments in cultured neurons, supports their pathogenicity, showing a hypomorphic effect.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Deficiência Intelectual , Humanos , Masculino , Animais , Camundongos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Lactente , Convulsões , Fenótipo , Epilepsia Tipo Ausência/genética , Epilepsia Generalizada/genética , Genótipo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares
15.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191484

RESUMO

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Assuntos
Ciliopatias , Genes Ligados ao Cromossomo X , Repetições WD40 , Animais , Humanos , Masculino , Encéfalo , Ciliopatias/genética , Cognição , Peixe-Zebra/genética
16.
medRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38293138

RESUMO

Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.

17.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38260399

RESUMO

RNA-binding proteins (RBPs) are key regulators of translation and plasticity in the nervous system, which are processes required for learning and memory. Indeed, RBP dysfunction has been linked to a wide range of neurological disorders where cognitive impairments are a key symptom. However, the human genome encodes nearly 2,000 RBPs, many of which have yet to be characterized with regards to neurological phenotypes like associative behaviors. To address this, we used the model organism C. elegans to perform a targeted screen assessing the role of 20 conserved RBPs in learning and memory. We identified 16 associative memory regulators, eight of which are novel. Intriguingly, three novel memory regulators are in the C. elegans Y-Box (CEY) RNA-binding protein family: cey-1, cey-2, and cey-3. We determined that cey-1 is the closest ortholog to the mammalian Y-Box RNA-binding (YBX) proteins and that CEY-1 is specifically required in the nervous system for the ability to remember. Additionally, CEY-1 is a memory promoting molecule, as increasing CEY-1 only in the nervous system improves memory. We also examined human copy number variation datasets and found that copy number deletions in the human YBX1 and YBX3 may be associated with neurological symptoms including intellectual disability, which mirror our findings in C. elegans. We identified a similar association with a rare, mono-allelic YBX3 variant in individuals with neurological findings. Strikingly, introducing this predicted deleterious YBX3 variant into the endogenous cey-1 locus caused memory deficits in the worm. Our study highlights that high-throughput approaches in the worm reveal novel and conserved regulators of memory and identified a potential new source of rare neurological disease linked to RBP dysfunction.

18.
Am J Med Genet A ; 194(1): 17-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743782

RESUMO

The collection of known genetic etiologies of neurodevelopmental disorders continues to increase, including several syndromes associated with defects in zinc finger protein transcription factors (ZNFs) that vary in clinical severity from mild learning disabilities and developmental delay to refractory seizures and severe autism spectrum disorder. Here we describe a new neurodevelopmental disorder associated with variants in ZBTB47 (also known as ZNF651), which encodes zinc finger and BTB domain-containing protein 47. Exome sequencing (ES) was performed for five unrelated patients with neurodevelopmental disorders. All five patients are heterozygous for a de novo missense variant in ZBTB47, with p.(Glu680Gly) (c.2039A>G) detected in one patient and p.(Glu477Lys) (c.1429G>A) identified in the other four patients. Both variants impact conserved amino acid residues. Bioinformatic analysis of each variant is consistent with pathogenicity. We present five unrelated patients with de novo missense variants in ZBTB47 and a phenotype characterized by developmental delay with intellectual disability, seizures, hypotonia, gait abnormalities, and variable movement abnormalities. We propose that these variants in ZBTB47 are the basis of a new neurodevelopmental disorder.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Criança , Humanos , Deficiências do Desenvolvimento/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Convulsões/genética , Fenótipo , Marcha
19.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934770

RESUMO

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Assuntos
Cinesinas , Osteogênese Imperfeita , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Regulação para Baixo , Cinesinas/genética , Cinesinas/metabolismo , Células NIH 3T3 , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Am J Hum Genet ; 110(12): 2103-2111, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37924809

RESUMO

Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C>T [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T>C [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome.


Assuntos
Haploinsuficiência , Paraplegia Espástica Hereditária , Criança , Humanos , Haploinsuficiência/genética , Mutação , Mutação de Sentido Incorreto/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Paraplegia Espástica Hereditária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...